If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=18(18+14)
We move all terms to the left:
8x^2-(18(18+14))=0
We add all the numbers together, and all the variables
8x^2-(1832)=0
We add all the numbers together, and all the variables
8x^2-1832=0
a = 8; b = 0; c = -1832;
Δ = b2-4ac
Δ = 02-4·8·(-1832)
Δ = 58624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{58624}=\sqrt{256*229}=\sqrt{256}*\sqrt{229}=16\sqrt{229}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{229}}{2*8}=\frac{0-16\sqrt{229}}{16} =-\frac{16\sqrt{229}}{16} =-\sqrt{229} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{229}}{2*8}=\frac{0+16\sqrt{229}}{16} =\frac{16\sqrt{229}}{16} =\sqrt{229} $
| 7x+8+5x+3=2(1+6x)+9 | | x/2.1=15.1 | | c-5/3.2=-2 | | 55=5(4x-5) | | 15^2=9(9+3x+1) | | 9(3x+5)=72 | | 5(a-2=0 | | -2p-12=14 | | (x/3)^2+3=5 | | 7(7+6x-17)=9(9+x+3) | | t+10=61 | | -3(x)=4x^2-1 | | 5x^+16x-10=0 | | 1/2(-9.81)t^2+5t+10=t | | 1.2(x+5)=2.4 | | -18=-6x-8) | | .5s-6=4.5s | | 9x/0.5x=0 | | 3/5x+7=3x-5 | | 14k=3k-16k=5 | | 2x-6-x=12 | | F(x)=x^2-12x-29 | | (x+11)42=30(3x+1) | | 20=u/3-8 | | 80=4u+16 | | 4x*x+6x=84 | | -2x+38=x-29 | | 2.5x-6=-8 | | 122=-x+221 | | 190-x=86 | | 2.08+0.18x=4.94-0.08x | | 12p^2-3p=-8 |